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The propagation of low-intensity shock waves (of the order of several gigapascals) in 
porous solids has a number of particularities [i] associated with the nonholonomicity of the 
equation of state [2]. The behavioral characteristics of a porous material on a range of 
pressures comparable with its strength are related to the irreversible nature of the deforma- 
tion of the medium and the importance of the influence of its strength and viscous properties 
[2]. In [3] it was shown that the anomalous behavior of the shock adiabat cannot be explained 
starting from the assumption that the porous material is in a state of thermodynamic equilib- 
rium under shock compression. The main cause of the absence of thermodynamic equilibrium be- 
hind the shock front is thought to be the nonuniform heating of the material, which is con- 
firmed by experiment [4-6]. The results of [7, 8] indicate that heating of the porous mate- 
rial is most pronounced in the neighborhood of the pores, where the temperature may exceed the 
melting points. 

Theoretical studies [9] have made it possible to establish the characteristics of the 
behavior of a porous substance under shock compression associated with local melting in the 
vicinity of the pores. It has been shown that the reduction in mechanical strength due to 
local melting leads to a break in the shock adiabat at the point at which melting begins. In 
this case the nonuniformity in the distribution of the dissipated energy depends to a con- 
siderable extent on the initial porosity. The investigation [9] was carried out on the as- 
sumption that the characteristic pore collapse times are substantially less than the char- 

acteristic thermal relaxation times. 

Experimental studies [10-12] indicate that the initial pore size has a considerable in- 
fluence on the nonequilibrium character of the heat release in shock compression, especially 
in the region of low loading pressures. Similar conclusions were reached in investigating 
the effect of particle size on the sensitivity of explosive charges to ignition [13-15]. 

Below we investigate the effect of initial pore size on the heating of a material in 
shock compression. The influence of the shock wave amplitude, the viscosity coefficient, and 
the yield point on the maximum possible temperature rise is analyzed. The dependence of the 
heating dynamics on the thermophysical properties of the porous material is studied. 

Let us consider the behavior of a porous material in response to the propagation of a 
low-intensity shock wave whose amplitude is so small that the compressibility of the solid 
can be neglected, but large enough for viscoplastic flow to develop in the vicinity of the 
pores. On this pressure interval the width of the shock front is much greater than the size 
of the inhomogeneities [i], and the change in density is mainly attributable to the collapse 
of the pores. We will base our investigation on the spherical cell model [i, 2], assuming 
that on the pressure range in question the density of the solid Ps is constant. The porosity 
parameter, or the ratio of the total volume of the material to the solid volume, is a = b3/ 
(b 3 -- a3), where b and a are the instantaneous radii of the cell and the pore. The initial 
cell radius bo is found from the condition that the total mass of the cells per unit mass is 
equal to i, i.e., 4~NPs(b~ -- a~)/3 = i, where N is the number of cells per unit mass. Using 
the definition for the initial porosity parameter ao, we can also write this condition in the 

form 

4nNps,a~/[3 (~o - -  t ) ]  = 1.  
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Consequently, a change in the initial pore size ao in a material of given porosity ao is 

equivalent to a change in the total number of cells (pores) per unit mass of material. 

In the coordinate system tied to the wave, the amplitude p and the velocity D of the 

shock wave are determined by the integral laws of conservation at the shock front which, with 

allowance for the relation p = Os/a (it is assumed that the amount of gas in the pores is 
insignificant), lead to the expression [i] 

P - Po = Ps o ~  (~o - ~) /~o~,  ( 1 )  

where p is the density of the porous medium; p = --(2Y/3)in[(~o -- i)/~o] is the amplitude of 

the elastic precursor. In this case D must exceed a certain value Do = {iY~o/[3Ps(~o -- i)]} ~/2, 
characterizing the minimum velocity of propagation of a stationary shock wave in a porous me- 

dium [2 ] . 

The functional relation between the average pressure p in the porous medium and the poros- 
ity parameter ~ in Eq. (i) is determined from the solution of the dynamic problem of the de- 
formation of the solid-phase material in the vicinity of a pore. For spherically symmetrical 
compression of the cell, in the coordinate system tied to the center of the pore, when there 
is only radial motion and all the parameters depend on the Euler coordinate r and time t, the 
continuity equation and the equation of motion take the form 

E 2 ~ i Ops ~Or -r r -  O(Psr-~" ), (Jr = 0; (2) 

Ps (Ou,/c)t @ uOu/&') -= Oc~r,/O;" @ (2/r)(% -- %)~ (3) 

On the pressure range investigated the solid-phase material complies with the relations 
for a viscoplastic medium 

~ ,  - -  % = Y : -  2 q ( o c v ' O r  - -  ~,'r). (4) 

The b o u n d a r y  c o n d i t i o n  a t  t he  po re  s u r f a c e  i s  w r i t t e n  in  t he  form 

~r!r=a = O. (5) 

Here, v is the radial velocity o r and o 9 = o~ are the stress tensor components; Y and n are 
the yield stress and the coefficient of viscosity of the solid. 

Using the assumption of incompressibility of the solid-phase material (Ps = const), we 
determine the first and second integrals of Eq. (2) in the form 

�9 3 u = a ( a / r )  2, r a - r ~ = a  a - a  o, ( 6 )  

where a dot denotes differentiation with respect to time; the zero subscript signifies initial 
values. 

Taking into account the fact that the pressure in the solid phase Ps = --(Or + 2~ )/3, 
and using (4) and (6), we reduce Eq. (3) to the form 

Ps(0U/Ot @ yOu~Or) = - - @ s / O r  @ 2 Y / r .  (7) 

In  t h i s  c a s e  the  e f f e c t  of  v i s c o s i t y  on t he  p r o c e s s  w i l l  be e x p r e s s e d  o n l y  t h r o u g h  the  
bounda ry  c o n d i t i o n  w h i c h ,  u s i n g  ( 6 ) ,  we w r i t e  i n  the form 

Ps I t=a= 2Y,'3 -- 4qa/a. (8) 

Integrating (7) over the radius from a to r and using (6) and (8), we obtain the pres- 
sure distribution ps(r, t) in the vicinity of the pore, averagingwhich over the volume of 
the spherical cell makes it possible to determine the average macroscopic pressure in the 
solid phase of the porous material: 

p , = - - p s  a ( ' l - - % ) a + ~  -- 7 a " c~ ' 
where 

3 (m 1/a - -  m) m l''a (2 + m) - -  3m (~ - -  i )  
q h - -  2 ( l - - m )  ' q % =  ( i - - m )  , r e = -  

I t  is easy to show that for the model in question the average pressure p in the porous 
medium is related to the average macroscopic pressure Pl in the solid phase of the material 
by the expression 

p = p / a .  (10) 
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The joint solution of Eqs. (9) and (i0) makes it possible to determine the nature of the 
motion of the material in the vicinity of the pores in terms of the average pressure in the 
medium. On going over from the variables (a, t) to the variables (~, t) the system of equa- 
tions (9), (i0) reduces to the equation p = p(~, &, ~) obtained in [2]. 

On collapse of the pores, the local heating associated with the competition between the 
processes of heat release due to plastic and viscous friction and removal of heat by conduc- 
tion is determined from the solution of the following system of equations 

q P s  -V/"+ v-~-r = r 2 v," kr "~--r ] + ' ~ ( ~ - - ~ o )  Or 

r(O) = to, T(O, r) = To, v(O, r) = O, 

OT/Orlr= a = O, OT/Orlr=b = O, 

)' 
(ll) 

where Cs, %s, T are the specific heat, thermal conductivity, and temperature of the solid. 

We introduce the dimensionless variables and parameters: 

: __ �9 {~]-v2 = t___ [ ~ ~ x/2 _[_r B1 ___a R~ = b W 1 = a 
T ao < P S ] ' R - -  % ,  a~ , a~ , \ P s ]  ' 

Y Re = a~ V-~-~s Pr  = cs ~1 ~ O = ~ P~ (T - -  To). 
= - 7 '  ~, ' - h - - = ~ s % '  P 

Here, u s is the thermal diffusivity of the solid; wl is the velocity of the pore boundary; 
the s~scripts 1 and 2 denote the coordinates of the pore radius and the radius of the 
spherical cell. The parameter B characterizes the plastic properties of the material, the 
Reynolds number Re its viscous properties, and the Prandtl number Pr the relation between 
the amount of heat released as a result of viscous friction and the amount of heat removed 
by conduction. 

In the new variables, using (4) and (6), we can reduce Eq. (ii), describing the nonsta- 
tionary heating of the material in the vicinity of a pore, to the form 

O0 w lR~ 12 wlR1 O0 2 O0 t 0 R ~ + ~ Rs (12) 
0"-'~- + wl  OB : Pr Re R 2 ON - -  

and the law of variation of the pore radius RI and its velocity wl are determined from the 
solution of the following system of differential equations: 

dwl = 3 ( i - - ~ 2 )  2 4wl ~ [ 2~ (~ i)] 
( l - - T 1 )  d% 2R 1 Wl ReR~ ~ i + - - 3 - - I n  ~ ~ (13)  

d R j d ~ =  w 1, 

where the coefficients ~ and ~2 are determined in accordance ~th (9). 

The initial and boundary conditions take the form 

Rl(o)  = l ,  wl(o) = o,~ o(o,j n )  = o ,  ( 1 4 )  

OO/OR [R=R 1 ---- O, OO/OR [R=R 2 ---- O. 

In the new variables the macroscopic porosity parameter is given by the expression 

= i + R~ (% -- i). (15) 

The last two terms in Eq. (12) reflect the intensity of the heat release due to plastic 

and viscous friction respectively. 

In view of the irreversibility of the loading-unloading diagram [16, 17], system of 
equations (13) is applicable only in the loading phase (wl ~ O, 0 ~ RI ~ i), since during 
unloading it is necessary to take into account the elastic or elastoplastic properties of the 

medium. 

Thus the analysis of the local heating dynamics of a porous material under shock com- 
pression reduces to the solution of system of equations (12), (13), (15) with initial and 
boundary conditions (14). The form of the function @(r, R) is determined by the set of inde- 
pendent parameters (~o, B, Re, and Pr); in this case the parameter B is bounded by the quan- 
tity Bo, which characterizes the condition of transition to the plastic state: 
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Substituting (17) 
tions: 

~< ~o ~ --(3/2)[1n (% - -  i) /ao] -1. 

An analysis of Eq. (12) shows that the highest temperatures occur in the vicinity of a 

pore. We will determine the maximum possible temperature rise attainable on the assumption 
that there are no heat conduction processes (this corresponds to the condition Pr § ~). Go- 

ing over in (12) from the variable �9 to the variable R] (as a result of the monotonicity of 
the function RI(T) in the loading phase) and taking into account boundary conditions (14) at 

R = RI, we obtain 

~2 //21 (~ ; )  d~l ,  (16)  O1 (R1) = - -  2 ~ l n R  1 + - ~  ,~ 

where the first and second terms on the right of the expression represent the heating due to 
plastic and viscous friction respectively. 

At R~ § 0 (a § i) the plasticity term has a logarithmic singularity, and the viscous 
friction term tends to infinity as RTs~, since on collapse of the pore wl % R~ 3/2 [2]. A simi- 
lar result was obtained in [9] starting from a consideration of the energy accumulation in the 
neighborhood of the pores. In fact, the heating described by Eq. (16) is bounded by the melt- 

ing point of the medium; when this is reached the material near the pore goes over into the 
liquid state and the parameter vanishes, since Y = 0. 

In the limiting case Re << 1 (this corresponds to either large values of the viscosity 
coefficient of the solid or small values of the initial pore radius so), neglecting the iner- 
tia terms in (13), we obtain an explicit form of the expression for the pore boundary velocity: 

Wl (R1) Re R 1 [ t  ~- R 1 k~0 1)] t 
4 " 1 

The law o f  m o t i o n  o f  t h e  p o r e  b o u n d a r y  g i v e n  by t h e  e x p r e s s i o n  ~ = ,t' dR;/wl(R'l) can  be  
reduced, using (17), to the relation i 

T = ~ l n  i--(2[/3) ln[i+R~ -a(o~ o-l)-l]j" (18) 

in (16) and carrying out the integration, we obtain the following rela- 

where 

Y 
2~ J' ln(t + y') dy', O~ (R~) = F (R~) -- -5- y' 

Yo 

F (R1) = - -  2~ In B 1 + (% - -  4) (4 - -  R~) ---3 In B~ - -  2~R13 (% - -  4) In B~ + 

+ (2~/3) {[4 + R~ (% - -  4/] In [R~ + (% - -  t) -~] + % In (1 - -  %1)1,  

y = R7 ~ (% -- 1) -1. 

The last integral can be expressed in terms of elementary functions: 

Y 
f l n ( l + y ' )  3 n y, "dg'=71nRl[21n(ao--l)+ 31nR1]--~(--]) ~.(%-t)t(t-B~l) 

, 12 
YO I~i 

At small values of the initial porosity do, confining ourselves to the first term of the 
series, after transformations we obtain 

O~ (R~) = ( % - -  t ) ( i - -  R~)( i '  2~/3) § (2~/3){[i  § R~(%-- ] ) ]X  

X In [/~31 -~ (0~ 0 -- I) -1] ~- 0~ 0 in (4 -- 0~:1)} -- 2~ In R 1 [In <% -- I) + 
- 4 - B ~ ( % - - 1 ) + t ] - - 3  l n R  I ( i + ~ I n R ~ ) .  

From the expressions obtained it follows that starting from a certain pore radius the 
maximum possible temperature rise for a material with porosity do but different initial sizes 
of the inhomogeneities does not depend on the quantity ao and is determined solely by the 
plastic properties of the material. 
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According to the literature (see, for example, [18-20]), for most metals the value of 
the viscosity coefficient is (103-10" ) Pa'sec. Taking Ps = 104 kg/m3, we find that for 
shock wave loading on the pressure interval i-i0 GPa the Reynolds parameter takes values of 

0.03-1.0 at ao = 100~mand 0.003-0.1 at ao = 10~m. Thus, the condition Re << I holds over 
a broad range of variation of the values of ao. 

The results of a numerical solution of Eqs. (13) and (16) are presented in Fig. i. 
Curves 1-3 illustrate the nature of the dependence 01(RI) at So = i.ii, $ = 0.i and the 

following values of the Re parameter: i, i0; 2, 5; 3, ~. Curve 4 gives the value of the di- 
mensionless temperature for the case Re << i. A decrease in Reynolds number (equivalent to 
a decrease in ao) leads to a change in the nature of the increase in 01; in this case the 
temperature rise is considerable even in the initial stages of the pore collapse process. 
The effect of the plastic properties of the medium, characterized by the parameter B, on the 
quantity Oz at fixed values of the parameters (uo, Re) reduces to a decrease in dimension- 

less temperature with decrease in B. 

In [2, 9] attention was drawn to the possibility of pore collapse at relatively low shock 
wave amplitudes (of the order of 1 GPa) as a result of local melting and the inertial motion 

of the material towards the center of the cavities. The investigations show that the behav- 
ioral characteristics of a shocked porous medium due to local melting in the vicinity of the 
pores depend to a considerable extent on the initial pore size and are expressed on a narrow 

range of variation of ao. This conclusion is based on the fact that at large Reynolds numbers (cor- 
responding to large values of ao) if pore collapse occurs, then it is due to the inertial mo- 
tion of the material towards the center of the cavities, since in this case the effect of local 
temperature gradients is expressed only in the final stages of the pore collapse process. As 
the Re parameter decreases, the conditions of formation of a local melting zone in the vicinity 
of the pores may develop even in the initial stages of the pore collapse process, but in this 

case thermal condition effects will exert an ever-increasing influence on the end value of 
the temperature. Under certain conditions the rate of heat removal exceeds the rate of heat 
release in plastic and viscous friction even in the initial stages of the process, as a result 
of which the material in the vicinity of the pores will remain practically unheated. 

In order to investigate the effect of thermal conduction on the heating dynamics of a 
porous material under shock compression, we carried out a numerical integration of system of 
equations (12)-(15). The solution of the problem is obtained by going over to a moving coor- 

dinate system using the variable ~ = (R -- RI)/(R2 -- Rz), ~ [0, I]. 

Using the conversion formulas 

oR--(R 2-R1) O~ ~ ~ =  ~ + (R 2-R~) o-T 

and taking into account the fact that RI = wz and Ru = wz(Rz/Rz) =, we reduce Eq. (12) to the 
form 

00 00 t "  0~O 
a--T + /: (% ~) @ = f~ , ~ ) ' - ~  + 13 (% ~)' (19) 

where 

A (~, D (n~ - n~) \ R2 / J P~ Re a 

f2 (~) = [PrBe (R 2 -- RI)21-I , 
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f3 (~, [) = - -  2~w~R~ B-3 + (t2/Re) w~R~R -6, 

The initial and boundary conditions are written in the form 

R~(o)= t, R~(o)= ( i - ~ : 9 - ' t  w~(O)= o, e(o,~)= o, 
oelo~l~=o = o, OelO~l~=~ = o. 

In order to determine the temperature profile @(T, 5) the following calculation method 

is used. For each time step At from system of equations (13) we calculate the functions 
R~(T), w~(~), and R2(T) = RI[I + R73(ao -- i)-i] ~, whose values are substituted in (19). By 
means of an implicit symmetrical scheme the latter equation is approximated by a system of 
algebraic equations solved for each time step by the pivotal method. Over the entire region 
of variation of the parameters (except for the region Re << i) the step AT was taken equal 
to 10 -2 . A numerical experiment showed that the required accuracy is achieved on satisfac- 
tion of the condition AT/(PrRe h 2) ~ 103 , where h is the step with respect to the space vari- 

able. In the region of values of the R~nolds number satisfying the condition Re << i, for 
determining the values of the functions RI(T), w~(T) we used the approximate expressions (17) 

and (18). 

The influence of thermal conduction on the heating of the porous medium is characterized 
by the value of the Prandtl number. The curves in Fig. 2 illustrate the variation of the di- 
mensionless pore surface temperature at the following values of thePrandtlnumber:l, ~; 2, 200; 
3, 20; 4, 2; the other parameters were fixed: ao = i.ii; b = 0.i; Re = 5. A decrease in the 
Prandtl number (equivalent to an increase in the thermal diffusivity z~) leads to a decrease 
in the end (highest) values of the temperature. 

The competition between the processes of heat release due to plastic and viscous friction 

and heat removal as a result of thermal conduction is illustrated by the temperature profiles 
@(T, 5) in Fig. 3. The calculations were made for So = i. Ii, 6 = 0.i, and Re = I. The fig- 
ures I-III correspond to values of the pore radius Ri = 0.6, 0.32, and 0.2. At Pr = 103 
(curve i) the rate of heat release predominates, which leads to characteristic temperature 
gradients in the vicinity of the pores and hence to essentially nonuniform heating of the 
porous material. The temperature profile for Pr = i0 (curve 2) corresponds to the case where 
the rate of heat removal predominates over the rate of heat release even in the initial stages 
of the pore collapse process. The results obtained point to the important influence of the 
Prandtl number on the developing temperature profile and hence on the time required for thermo- 
dynamic equilibrium to be established in the shocked material. 

As the Reynolds number decreases, the effect of thermal conduction on the heating dynam- 
ics and the end value of the temperature increases. On the other hand, the investigations 
show that the maximum possible temperature rise for a material with porosity So at a fixed 
value of the parameter B is limited by the temperature value @~ corresponding to the case 
Re << I. The effect of the Prandtl number on the variation of the pore surface temperature 
in the region Re << 1 is illustrated in Fig. 4. Curves 1-3 correspond to Re = 0.i, curves 
4-6 to Re = 0.5. The Pr parameter was taken equal to i05 (curves i, 4), 104 (curves 2, 5), 
and 103 (curves 3, 6). Curve 7 gives the maximum possible value of the dimensionless tem- 
perature as Pr§ ( z s = 0); the other parameters have the same value as in Fig. 3. At a 
fixed value of Pr, a decrease in the Reynolds number (equivalent to a decrease in the ini- 
tial pore size) leads to a substantial decrease in the end (highest) temperature @~ which 
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firms the conclusion concerning the effect of the size of the inhomogeneities on the condi- 
tions for formation of a local melting zone and the time required for thermal equilibrium to 
be established in the porous material. 

For real materials the Prandtl number varies within wide limits, which is associated 
with the broad range of variation of the coefficient of viscosity and thermal diffusivity 
for different materials. Thus, for metals, assuming Ps = 104 kg/m3, • = 10-4-10-s m2/sec, 
and n = 103-104 Pa.sec, we obtain Pr = i03-i0 s. 

As the amplitude of the shock wave increases, so does the Reynolds number, whereas the 
B parameter decreases, which also leads to a decrease in the pore collapse time. Conse- 
quently, with increase in shock wave intensity the effect of the initial pore size on the 
heating dynamics will grow weaker or, more precisely, be shifted in the direction of lower 
values of ao. From this it follows that the effect of the size of the inhomogeneities on 
the heating dynamics of a porous material under shock loading will be most strongly expressed 
in the region of pressures comparable with its strength, which is also confirmed by the re- 

sults of experimental research [10-12, 15]. 

These investigations show that the nonequilibrium nature of the heating of the shocked 
material depends to a considerable extent not only on the initial porosity but also on the 
initial pore size. The highest temperatures are attained in the neighborhood of the struc- 
tural inhomogeneities, and in the limiting cases of large and small Reynolds numbers the 
maximum possible temperature rise is determined only by the plastic properties of the medium. 
As a result of an analysis of the effect of thermal conduction on the temperature profile 
developing in the vicinity of a pore it has been found that the end (highest) value of the 
temperature and the time required for the establishment of thermal equilibrium in the shocked 
material depend to a considerable extent on the initial size of the inhomogeneities. 
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FRACTURE WAVE IN A CHAIN STRUCTURE 

L. I. Slepyan and L. V. Troyankina UDC 534.1:539.375 

Various formulations of the problem of fracture wave propagation in an elastic brittle 

body are known (see [1-4] including references). Each of the proposed variants of the theory 
of this process is based on some hypothesis, for example: concerning the fracture wave veloc- 
ity [2-5], the intensity of the elastic precursor [6], or the fracture energy [7, 8]. The 
introduction of an additional relation is necessary in order to close the system of equations 

of dynamics of the elasto-brittle continuum. However, such a relation cannot be justified 
without having recourse to data on the structure of the fracture front. This distinguishes 

the fracture wave from "ordinary" nonlinear waves whose macroparameters are determined inde- 
pendently of the structure of the front [8]. 

This fundamental difficulty can be overcome if we consider a structured medium, as is 
done below. As the simplest model of a structured medium we will take a linear chain in which 

each of the component unit masses interacts with the two adjacent masses through linear-elastic 
inertialess bonds (the distance between masses and the stiffnesses of the bonds are also taken 
as units of measurement, the velocity of the long waves in the undamaged chain being taken as 
the unit of velocity). At a certain bond stress o = o, << 1 the bond partially fails: The 
bond stiffness takes a (positive) value e2 < i. As distinct from the formulation of the same 
problem within a continuum framework [5-8], here there is no need to introduce any additional 
hypotheses. 

Let us consider the stationary problem, in solving which we will use the same methods 
as in investigating the dynamics of a crack in a grid [9]. In the problem in question, taking 
into account the structure leads, essentially, to the same result as in [9]: high-frequency 
waves carrying part of the energy away from the fracture front (effect analogous to a tempera- 

ture rise [7]). In the dynamics of a single crack, the structure of the medium determines the 
macroscopic fracture criterion and, consequently, affects the macroparameters of the velocity 

and stress fields. Thus, in the propagation of a fracture wave the microstructure also deter- 
mines the macroparameters of the process (longwave approximation) -- the ratios ~i/o,, ~2/o,, 

where o~ = const is the average stress in the elastic precursor, and 02 = const is the average 
stress behind the fracture front. The earlier assumptions [8] to the effect that oi < ~, and 

fracture can occur even when 02 < o, (oi,2 > 0) are confirmed~ The latter conclusion might 
appear strange if considered within the context of an unstructured continuum. Here, however, 
it is obvious: The total stresses behind the fracture front (with the high-frequency waves 
taken into account) exceed the average value. 

i. Formulation of the Problem and Basic Relations 

We assume that the velocities u and accelerations a are functions of a single variable 
T = x -- vt, where x = 0, • ... are the Lagrangian coordinates of the masses, v = const > 0 
is the velocity of the fracture front, and t is time. We note that the displacements, which 
owing to the presence of the elastic precursor also depend on x, cannot be similarly defined. 
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